
Appendix: Mathiness in the Theory of 
Economic Growth by Paul Romer

This appendix exists as both a Mathematica notebook called Mathiness 
Appendix.nb and as two different pdf print-outs. The notebook is a 
combination of statements intended to communicate with people and 
statements that communicate with the computational engine in 
Mathematica.  

One of the pdf printouts is called Mathiness Appendix.pdf. It prints only 
the plots and the typeset text that are intended as communication with 
people. The second pdf, called Mathiness Appendix Expanded.pdf prints 
those materials plus the supporting input to and detailed output from 
Mathematica that generates the plots and checks some of the algebra. 

If you are reading one of these and would like any other, all three are 
both available for download from my website, paulromer.net. 

Appendix A: Scale Effects
As a function of individual consumption q, the individual inverse 
demand function is 

p = q-−a,

so as a function of total quantity Q, the inverse demand function in a 
market with N identical individuals gives the demand price pD as this 
function of Q and N :

pD =
Q
N

-−a
.

The market inverse supply function is 
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pS = Qb.

Implicitly, these expressions assume units for measuring both output Q 
and the numeraire good that set any multiplicative constant in these 
demand functions equal to 1. 

The market clearing condition with a mark-up m ≥ 1 that could arise 
from a tax or a monopoly markup is 

pD = m pS,

which implies

Q
N

-−a
= m Qb.

This yields a solution for Q of the form   

Q = m-− 1
a+b N

a
a+b .

This figure illustrates an equilibrium with a mark-up m = 2, 
a = 0.5, b = 1.5, yields a value of Q roughly equal to 4: 

Demand Supply

Demand price Supply price

The shaded area represents the surplus generated in this case. To 
calculate the value that  this area represents, we start with the area under 
the individual demand curve from 0 to q, which takes the form 
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The shaded area represents the surplus generated in this case. To 
calculate the value that  this area represents, we start with the area under 
the individual demand curve from 0 to q, which takes the form 

u(q) =
1

1 -− a
q1-−a .

As a function of the total quantity consumed, the sum across individuals 
of the area under the demand curves is 

U(Q) =
N

1 -− a
Q
N

1-−a
.

Total cost, the area under the supply curve, is  

C(Q) =
1

1 + b
Q1+b .

The surplus, equal to the shaded area in the figure, then can be calculated 
as  

S = U(Q) -− C(Q) =
N

1 -− a
Q
N

1-−a
-−

1
1 + b

Q1+b.

The Mathematica calculations demonstrate that the implied expression 
for the surplus S as a function of the underlying parameters 
a, b, m, and N is

S =
(a + m -− 1 + b m) m-− 1+b

a+b

(1 -− a) (1 + b)
N

a (1+b)
a+b .

As noted in the main text, at a = 1
2

 and b = 0 this reduces to 

S =
2 m -− 1

m2 N.

 

◼ Calculations
◼ Generating the Figure that Illustrates the Surplus

Online Appendix, Mathiness in the Theory of Growth, by Paul Romer

3



Appendix B: Growth in the Lucas-Moll 
Economies

To justify such statements as “the frequency at which innovations arrive, 
β, does not affect the growth rate, g” (Lucas and Moll 2014, p. 29), the 
authors rely on a limit argument about a limit does not exist. 

If we let gβ(t) denote the growth rate for a given value of β and date t, the 
rate g referenced in this quote is a limit,

g = limt→∞ gβ(t) = 2 %,

which indeed, does not depend on β. However, this number is not a good 
guide to the behavior specified in the model at any date T. The proof, 
available in the Expanded version of this appendix, shows that 

limβ→0 gβ(T) = 0.

In fact, it establishes a stronger result, that the growth rate converges 
uniformly to zero on any finite interval:

Proposition: In the family of B economies, for any T > 0 and any ϵ > 0, 
there exists a β


> 0 such that for all β ∈ 0, β


 and all t ∈ [0, T], 

0 ≤ gβ(t) < ϵ.

So at every date T, the growth rate does depend on β and it converges to 
zero as β goes to zero. This is exactly what one should expect from the 
model itself. When β is set equal to 0, the model implies that the growth 
rate is also equal to zero. 

The difference between these two types of limit implies that the order 
one uses to calculate the double limit matters:

limT→∞ limβ→0 gβ(T) ≠ limβ→0 limT→∞ gβ(T).

This dependence on the order tells us that if we recognize g(β, T) as a 
function from ℝ2 →ℝ, the limit of g as (β, T) goes to (0, ∞) does not 
exist. 

Lucas and Moll use limit arguments about this limit that does not exist to 
claim that two types of economy, labeled here the P and B economies, 
are so similar as to be observationally equivalent. Simple numerical 
calculations show the growth rate in these two types of economy differ in 
ways that are plainly observable. 
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Lucas and Moll use limit arguments about this limit that does not exist to 
claim that two types of economy, labeled here the P and B economies, 
are so similar as to be observationally equivalent. Simple numerical 
calculations show the growth rate in these two types of economy differ in 
ways that are plainly observable. 

For example, this figure shows a plot over time of the growth rate in a 
version of the P economy. 
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Contrast this with the next figure, which shows the plot over time of the 
growth rate in a collection of B economies with decreasing arrival rates 
β, where curves displaced to the right have a lower value of β. It shows 
how the growth rate at any fixed date such as T = 300 falls from a value 
close to 2% to a value close to zero as β decreases. 
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These plots show that there at every date T is no value for the growth rate 
g that the P economy shares with the collection of all the B economies. 
The only value that they have in common is the limit of the growth rate 
for fixed β as T goes to infinity. As noted in the text of the 
accompanying article, this kind of limit is not an observable. No feasible 
set of observations on the growth rate, which must of course be taken at 
finite times, can ever falsify an assertion about a limit as time goes to 
infinity. 

◼ Plotting Growth in the P Economy
◼ Plotting Growth in the B Economies 
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Appendix C: Calculating the Ratio of Wealth to 
Income

Let Yγ denote income measured in gross terms and let Yν denote income 
measured in net terms. (The mnemonic is “gamma for gross” and “nu for 
net.”)  Symmetrically, let  sγ and sν denote the gross and net measures of 
saving. Let δ be the depreciation rate. Let g be the rate of growth of gross 
output. Let K be the stock of capital. 

By definition, 

Yν = Yγ -− δ K,

K
<
= sγ Yγ -− δ K = sν Yν.

For K
Yγ

to be constant in a steady state, K
<

K
 must be equal to g, which 

implies 

g =
K
<

K
= sγ

Yγ

K
-− δ = sν

Yν

K
.

This yields the two expressions for the steady-state ratio of capital to 
output, 

K
Yγ

=
sγ

g + δ
, (1)

K
Yν

=
sν
g

. (2)

From the definitions, the ratio of Yγ to Yν is equal to   

Yγ

Yν
=

Yν + δ K
Yν

= 1 + δ
K
Yν

= 1 + δ
sν
g

(3)

By taking the ratio of equation (2) to equation (1), we have a second 
expression for the ratio of gross to net income

Yγ

Yν
=

sν
sγ

g + δ
g

. (4)

Combining this with equation (3) yields  
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1 + δ
sν
g
=

sν
sγ

g + δ
g

.

Solving for sγ yields   

sγ = sν
g + δ

g
1

1 + δ sν
g

= sν
g + δ

g
g

g + δ sν
= sν

g + δ
g + δ sν

. (5)

Let g be an initial growth rate and g*⋆ be a lower growth rate. In the 
example considered by Piketty and Zucman (2014), g*⋆ = 1

2
g. Following 

their approach, assume that sν stays constant when g changes. Let other 
variables with an asterisk denote the values implied by the new saving 
rate. For example, let sγ*⋆ denote the new gross saving rate implied by g*⋆.  

Consider the ratio 

g
g*⋆

=
 K

Yν

*⋆

K
Yν

.

To decompose this into the three terms described in the text, rewrite the 
numerator and denominator in terms of ratios that involve Yγ 

g
g*⋆

=
 K

Yγ

*⋆

 K
Yγ


 Yγ
Yν

*⋆

Yγ
Yν

.

Then use the expression for K
Yγ

 from equation (1) to rewrite the first term, 

g
g*⋆

=

sγ*⋆

g*⋆+δ
sγ

g+δ

 Yγ
Yν

*⋆

Yγ
Yν

and multiply and divide by sγ to get  

g
g*⋆

=

sγ
g*⋆+δ

sγ
g+δ

sγ*⋆

sγ

 Yγ
Yν

*⋆

Yγ
Yν

= T1 T2 T3.
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The first of these three terms, 

T1 =

sγ
g*⋆+δ

sγ
g+δ

,

is the change in the ratio of capital to gross income that we would 
observe if the gross saving rate remained constant at its initial value sγ 
when the growth rate falls from g to g*⋆. The second term,  

T2 =
sγ*⋆

sγ
=

g*⋆+δ
g*⋆+δsν

g+δ
g+δsν

captures the change in the gross saving rate that is implied by the change 
in g when sν remains constant. The final term, 

T3 =
 Yγ

Yν

*⋆

Yγ
Yν

=
1 + δ sν

g*⋆

1 + δ sν
g

,

is the change in the ratio of gross to net income implied by the change in 
the growth rate. 

The parameter values in the paper,  δ = 3 %,  sν = 10 %,  g = 3 %, and 
g*⋆ = 1.5 % imply values  

T1 = 1.333,
T2 = 1.375, and

T3 = 1.091.

In this example, because g falls to half its previous value, the ratio of K 
to Yν doubles. The calculations verify that with these values, the product 
T1 T2 T3 is equal to 2.  

◼ Calculations for steady state relationships
◼ Dynamics

Because it is an easy exercise, it may also be of some interest to explore 
the time path for these variables. Consider a case of an economy that 
starts in a steady state with g = 3 % and sν = 10 % so the implied value 
for sγ is approximately 18 %. We can calculate the capital to gross output 
ratio as
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Because it is an easy exercise, it may also be of some interest to explore 
the time path for these variables. Consider a case of an economy that 
starts in a steady state with g = 3 % and sν = 10 % so the implied value 
for sγ is approximately 18 %. We can calculate the capital to gross output 
ratio as

K
Yγ

=
sγ

g + δ
.

Let k = K
Yγ

 denote this ratio and consider the expression for its percentage 

rate of change

k
<

k
=

K
<

K
-−

Yγ
<

Yγ
= sγ

Yγ

K
-− δ -− g,

which implies 

k
<
= sγ -− (δ + g) k, (6)

where sγ is related to sν by equation (9) from above, 

sγ = sν
g + δ

g + δsν
. (7)

Suppose that at time zero, the economy is at its steady state at a growth 
rate g = 3 % per year. At time zero, the growth rate falls to from 3 % to 
1.5 %.  

In an approach that maintains that the saving rate is fixed when the 
growth rate changes, there are now two possibilities -- either the gross 
saving rate remains constant or the net saving rate remains constant. To 
capture the first case, we can use a version of equation (6) uses 
g*⋆ = 1.5 % but leaves sγ unchanged at roughly 18 %.  In the second case, 
in equation (6) we insert both the new value sγ*⋆ = 25 % implied by 
equation (7) and the new growth rate g*⋆.  

This plot compares the evolution of the capital to gross output ratio under 
these two scenarios.  
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◼ Calculations for the dynamic paths 
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